Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 849
Filtrar
1.
Cell Rep ; 43(4): 114033, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38568811

RESUMO

Small GTPases of the Ras subfamily are best known for their role as proto-oncoproteins, while their function during microbial infection has remained elusive. Here, we show that Legionella pneumophila hijacks the small GTPase NRas to the Legionella-containing vacuole (LCV) surface. A CRISPR interference screen identifies a single L. pneumophila effector, DenR (Lpg1909), required for this process. Recruitment is specific for NRas, while its homologs KRas and HRas are excluded from LCVs. The C-terminal hypervariable tail of NRas is sufficient for recruitment, and interference with either NRas farnesylation or S-acylation sites abrogates recruitment. Intriguingly, we detect markers of active NRas signaling on the LCV, suggesting it acts as a signaling platform. Subsequent phosphoproteomics analyses show that DenR rewires the host NRas signaling landscape, including dampening of the canonical mitogen-activated protein kinase pathway. These results provide evidence for L. pneumophila targeting NRas and suggest a link between NRas GTPase signaling and microbial infection.


Assuntos
Proteínas de Bactérias , GTP Fosfo-Hidrolases , Legionella pneumophila , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidade , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação para Baixo , Células HEK293 , Doença dos Legionários/microbiologia , Doença dos Legionários/metabolismo , Vacúolos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética
2.
Virulence ; 15(1): 2327096, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38466143

RESUMO

Legionella pneumophila (L. pneumophila) is a prevalent pathogenic bacterium responsible for significant global health concerns. Nonetheless, the precise pathogenic mechanisms of L. pneumophila have still remained elusive. Autophagy, a direct cellular response to L. pneumophila infection and other pathogens, involves the recognition and degradation of these invaders in lysosomes. Histone deacetylase 6 (HDAC6), a distinctive member of the histone deacetylase family, plays a multifaceted role in autophagy regulation. This study aimed to investigate the role of HDAC6 in macrophage autophagy via the autophagolysosomal pathway, leading to alleviate L. pneumophila-induced pneumonia. The results revealed a substantial upregulation of HDAC6 expression level in murine lung tissues infected by L. pneumophila. Notably, mice lacking HDAC6 exhibited a protective response against L. pneumophila-induced pulmonary tissue inflammation, which was characterized by the reduced bacterial load and diminished release of pro-inflammatory cytokines. Transcriptomic analysis has shed light on the regulatory role of HDAC6 in L. pneumophila infection in mice, particularly through the autophagy pathway of macrophages. Validation using L. pneumophila-induced macrophages from mice with HDAC6 gene knockout demonstrated a decrease in cellular bacterial load, activation of the autophagolysosomal pathway, and enhancement of cellular autophagic flux. In summary, the findings indicated that HDAC6 knockout could lead to the upregulation of p-ULK1 expression level, promoting the autophagy-lysosomal pathway, increasing autophagic flux, and ultimately strengthening the bactericidal capacity of macrophages. This contributes to the alleviation of L. pneumophila-induced pneumonia.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Pneumonia , Animais , Camundongos , Autofagia , Desacetilase 6 de Histona/genética , Legionella pneumophila/genética , Doença dos Legionários/genética , Macrófagos
4.
Elife ; 122023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095310

RESUMO

Identifying virulence-critical genes from pathogens is often limited by functional redundancy. To rapidly interrogate the contributions of combinations of genes to a biological outcome, we have developed a multiplex, randomized CRISPR interference sequencing (MuRCiS) approach. At its center is a new method for the randomized self-assembly of CRISPR arrays from synthetic oligonucleotide pairs. When paired with PacBio long-read sequencing, MuRCiS allowed for near-comprehensive interrogation of all pairwise combinations of a group of 44 Legionella pneumophila virulence genes encoding highly conserved transmembrane proteins for their role in pathogenesis. Both amoeba and human macrophages were challenged with L. pneumophila bearing the pooled CRISPR array libraries, leading to the identification of several new virulence-critical combinations of genes. lpg2888 and lpg3000 were particularly fascinating for their apparent redundant functions during L. pneumophila human macrophage infection, while lpg3000 alone was essential for L. pneumophila virulence in the amoeban host Acanthamoeba castellanii. Thus, MuRCiS provides a method for rapid genetic examination of even large groups of redundant genes, setting the stage for application of this technology to a variety of biological contexts and organisms.


Assuntos
Acanthamoeba castellanii , Legionella pneumophila , Doença dos Legionários , Humanos , Macrófagos , Legionella pneumophila/metabolismo , Acanthamoeba castellanii/genética , Virulência/genética , Proteínas de Bactérias/metabolismo
5.
Front Cell Infect Microbiol ; 13: 1252515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965258

RESUMO

Introduction: Severe Legionnaires' disease (LD) can lead to multi-organ failure or death in 10%-30% of patients. Although hyper-inflammation and immunoparalysis are well described in sepsis and are associated with high disease severity, little is known about the immune response in LD. This study aimed to evaluate the immune status of patients with LD and its association with disease severity. Methods: A total of 92 hospitalized LD patients were included; 19 plasmatic cytokines and pulmonary Legionella DNA load were measured in 84 patients on the day of inclusion (day 0, D0). Immune functional assays (IFAs) were performed from whole blood samples collected at D2 and stimulated with concanavalin A [conA, n = 19 patients and n = 21 healthy volunteers (HV)] or lipopolysaccharide (LPS, n = 14 patients and n = 9 HV). A total of 19 cytokines (conA stimulation) and TNF-α (LPS stimulation) were quantified from the supernatants. The Sequential Organ Failure Assessment (SOFA) severity score was recorded at D0 and the mechanical ventilation (MV) status was recorded at D0 and D8. Results: Among the 84 patients, a higher secretion of plasmatic MCP-1, MIP1-ß, IL-6, IL-8, IFN-γ, TNF-α, and IL-17 was observed in the patients with D0 and D8 MV. Multiparametric analysis showed that these seven cytokines were positively associated with the SOFA score. Upon conA stimulation, LD patients had a lower secretion capacity for 16 of the 19 quantified cytokines and a higher release of IL-18 and MCP-1 compared to HV. IL-18 secretion was higher in D0 and D8 MV patients. TNF-α secretion, measured after ex vivo LPS stimulation, was significantly reduced in LD patients and was associated with D8 MV status. Discussion: The present findings describe a hyper-inflammatory phase at the initial phase of Legionella pneumonia that is more pronounced in patients with severe LD. These patients also present an immunoparalysis for a large number of cytokines, except IL-18 whose secretion is increased. An assessment of the immune response may be relevant to identify patients eligible for future innovative host-directed therapies.


Assuntos
Interleucina-18 , Doença dos Legionários , Humanos , Fator de Necrose Tumoral alfa , Lipopolissacarídeos , Doença dos Legionários/complicações , Citocinas
6.
Int J Biol Macromol ; 252: 126366, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633566

RESUMO

Macrophage infectivity potentiator (MIP) proteins are widespread in human pathogens including Legionella pneumophila, the causative agent of Legionnaires' disease and protozoans such as Trypanosoma cruzi. All MIP proteins contain a FKBP (FK506 binding protein)-like prolyl-cis/trans-isomerase domain that hence presents an attractive drug target. Some MIPs such as the Legionella pneumophila protein (LpMIP) have additional appendage domains of mostly unknown function. In full-length, homodimeric LpMIP, the N-terminal dimerization domain is linked to the FKBP-like domain via a long, free-standing stalk helix. Combining X-ray crystallography, NMR and EPR spectroscopy and SAXS, we elucidated the importance of the stalk helix for protein dynamics and inhibitor binding to the FKBP-like domain and bidirectional crosstalk between the different protein regions. The first comparison of a microbial MIP and a human FKBP in complex with the same synthetic inhibitor was made possible by high-resolution structures of LpMIP with a [4.3.1]-aza-bicyclic sulfonamide and provides a basis for designing pathogen-selective inhibitors. Through stereospecific methylation, the affinity of inhibitors to L. pneumophila and T. cruzi MIP was greatly improved. The resulting X-ray inhibitor-complex structures of LpMIP and TcMIP at 1.49 and 1.34 Å, respectively, provide a starting point for developing potent inhibitors against MIPs from multiple pathogenic microorganisms.


Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Legionella pneumophila/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas de Bactérias/química , Proteínas de Ligação a Tacrolimo/química , Macrófagos/metabolismo
7.
PLoS Pathog ; 19(6): e1010767, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37279255

RESUMO

The inflammatory cytokine tumor necrosis factor (TNF) is necessary for host defense against many intracellular pathogens, including Legionella pneumophila. Legionella causes the severe pneumonia Legionnaires' disease and predominantly affects individuals with a suppressed immune system, including those receiving therapeutic TNF blockade to treat autoinflammatory disorders. TNF induces pro-inflammatory gene expression, cellular proliferation, and survival signals in certain contexts, but can also trigger programmed cell death in others. It remains unclear, however, which of the pleiotropic functions of TNF mediate control of intracellular bacterial pathogens like Legionella. In this study, we demonstrate that TNF signaling licenses macrophages to die rapidly in response to Legionella infection. We find that TNF-licensed cells undergo rapid gasdermin-dependent, pyroptotic death downstream of inflammasome activation. We also find that TNF signaling upregulates components of the inflammasome response, and that the caspase-11-mediated non-canonical inflammasome is the first inflammasome to be activated, with caspase-1 and caspase-8 mediating delayed pyroptotic death. We find that all three caspases are collectively required for optimal TNF-mediated restriction of bacterial replication in macrophages. Furthermore, caspase-8 is required for control of pulmonary Legionella infection. These findings reveal a TNF-dependent mechanism in macrophages for activating rapid cell death that is collectively mediated by caspases-1, -8, and -11 and subsequent restriction of Legionella infection.


Assuntos
Doença dos Legionários , Pneumonia , Camundongos , Animais , Humanos , Caspase 1/metabolismo , Caspase 8/metabolismo , Inflamassomos , Camundongos Knockout , Macrófagos , Caspases/metabolismo , Morte Celular , Fator de Necrose Tumoral alfa/metabolismo , Pneumonia/metabolismo , Licenciamento
8.
PLoS Pathog ; 19(6): e1011473, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37347796

RESUMO

Legionella pneumophila is a natural pathogen of amoebae that causes Legionnaires' Disease in immunocompromised individuals via replication within macrophages. L. pneumophila virulence and intracellular replication hinges on hundreds of Dot/Icm-translocated effector proteins, which are essential for biogenesis of the replication-permissive Legionella-containing vacuole (LCV). However, effector activity can also enhance mammalian host defense via effector-triggered immunity. The L. pneumophila effector LegC4 is important for virulence in amoebae but enhances host defense against L. pneumophila in the mouse lung and, uniquely, within macrophages activated with either tumor necrosis factor (TNF) or interferon (IFN)-γ. The mechanism by which LegC4 potentiates cytokine-mediated host defense in macrophages is unknown. Here, we found that LegC4 enhances cytokine-mediated phagolysosomal fusion with Legionella-containing vacuole (LCV) and binds host proteasome activator (PA)28α, which forms a heterooligomer with PA28ß to facilitate ubiquitin-independent proteasomal degradation of oxidant-damaged (carbonylated) proteins. We found that oxidative stress was sustained in the presence of LegC4 and that the LegC4 restriction phenotype was relieved in PA28αß-deficient macrophages and in the lungs of mice in vivo. Our data also show that oxidative stress is sufficient for LegC4-mediated restriction in macrophages producing PA28αß. PA28αß has been traditionally associated with antigen presentation; however, our data support a novel mechanism whereby effector-mediated subversion of PA28αß enhances cell-autonomous host defense against L. pneumophila under inflammatory and oxidative stress conditions. This work provides a solid foundation to evaluate induced proteasome regulators as mediators of innate immunity.


Assuntos
Amoeba , Legionella pneumophila , Doença dos Legionários , Animais , Camundongos , Legionella pneumophila/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Citoplasma/metabolismo , Vacúolos/metabolismo , Citocinas/metabolismo , Proteínas de Bactérias/metabolismo , Mamíferos
9.
Elife ; 122023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158597

RESUMO

The amoeba-resistant bacterium Legionella pneumophila causes Legionnaires' disease and employs a type IV secretion system (T4SS) to replicate in the unique, ER-associated Legionella-containing vacuole (LCV). The large fusion GTPase Sey1/atlastin is implicated in ER dynamics, ER-derived lipid droplet (LD) formation, and LCV maturation. Here, we employ cryo-electron tomography, confocal microscopy, proteomics, and isotopologue profiling to analyze LCV-LD interactions in the genetically tractable amoeba Dictyostelium discoideum. Dually fluorescence-labeled D. discoideum producing LCV and LD markers revealed that Sey1 as well as the L. pneumophila T4SS and the Ran GTPase activator LegG1 promote LCV-LD interactions. In vitro reconstitution using purified LCVs and LDs from parental or Δsey1 mutant D. discoideum indicated that Sey1 and GTP promote this process. Sey1 and the L. pneumophila fatty acid transporter FadL were implicated in palmitate catabolism and palmitate-dependent intracellular growth. Taken together, our results reveal that Sey1 and LegG1 mediate LD- and FadL-dependent fatty acid metabolism of intracellular L. pneumophila.


Assuntos
Dictyostelium , Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Legionella pneumophila/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Macrófagos/metabolismo , Dictyostelium/metabolismo , Gotículas Lipídicas/metabolismo , Vacúolos/metabolismo , Legionella/metabolismo , Doença dos Legionários/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
10.
PLoS Pathog ; 19(5): e1011375, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155695

RESUMO

The zebrafish has become a powerful model organism to study host-pathogen interactions. Here, we developed a zebrafish model to dissect the innate immune response to Legionella pneumophila during infection. We show that L. pneumophila cause zebrafish larvae death in a dose dependent manner. Additionally, we show that macrophages are the first line of defence and cooperate with neutrophils to clear the infection. Immunocompromised humans have an increased propensity to develop pneumonia, similarly, when either macrophages or neutrophils are depleted, these "immunocompromised" larvae become lethally sensitive to L. pneumophila. Also, as observed in human infections, the adaptor signalling molecule Myd88 is not required to control disease in the larvae. Furthermore, proinflammatory cytokine genes il1ß and tnf-α were upregulated during infection, recapitulating key immune responses seen in human infection. Strikingly, we uncovered a previously undescribed infection phenotype in zebrafish larvae, whereby bloodborne, wild type L. pneumophila invade and grow in the larval yolk region, a phenotype not observed with a type IV secretion system deficient mutant that cannot translocate effectors into its host cell. Thus, zebrafish larva represents an innovative L. pneumophila infection model that mimics important aspects of the human immune response to L. pneumophila infection and will allow the elucidation of mechanisms by which type IV secretion effectors allow L. pneumophila to cross host cell membranes and obtain nutrients from nutrient rich environments.


Assuntos
Legionella pneumophila , Doença dos Legionários , Animais , Humanos , Peixe-Zebra , Imunidade Inata , Macrófagos , Larva
11.
Microb Genom ; 9(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36947445

RESUMO

Legionella pneumophila are host-adapted bacteria that infect and reproduce primarily in amoeboid protists. Using similar infection mechanisms, they infect human macrophages, and cause Legionnaires' disease, an atypical pneumonia, and the milder Pontiac fever. We hypothesized that, despite the similarities in infection mechanisms, the hosts are different enough that there exist high-selective value mutations that would dramatically increase the fitness of Legionella inside the human host. By comparing a large number of isolates from independent infections, we identified two genes, mutated in three unrelated patients, despite the short duration of the incubation period (2-14 days). One is a gene coding for an outer membrane protein (OMP) belonging to the OmpP1/FadL family. The other is a gene coding for an EAL-domain-containing protein involved in cyclic-di-GMP regulation, which in turn modulates flagellar activity. The clinical strain, carrying the mutated EAL-domain-containing homologue, grows faster in macrophages than the wild-type strain, and thus appears to be better adapted to the human host. As human-to-human transmission is very rare, fixation of these mutations into the population and spread into the environment is unlikely. Therefore, parallel evolution - here mutations in the same genes observed in independent human infections - could point to adaptations to the accidental human host. These results suggest that despite the ability of L. pneumophila to infect, replicate in and exit from macrophages, its human-specific adaptations are unlikely to be fixed in the population.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Legionella/genética , Doença dos Legionários/metabolismo , Macrófagos/microbiologia
12.
J Med Microbiol ; 72(3)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36927577

RESUMO

Introduction. Legionella pneumophila is a Gram-negative flagellated bacteria that can infect human lungs and cause a severe form of pneumonia named Legionnaires' disease.Hypothesis. We hypothesize that L. pneumophila infection induces methylomic changes in methylcytosine dioxygenases, ten-eleven translocation (TET) genes, and controls DNA methylation following infection.Aim. In the current research, we sought to further investigate DNA methylation changes in human lung epithelial cells upon L. pneumophila infection and determine how methylation inhibitor agents disturb L. pneumophila reproduction.Methodology. A549 cell line was used in L. pneumophila infection and inhibitors' treatment, including 5-azacytidine (5-AZA) and (-)-epigallocatechin-3-O-gallate (EGCG).Results. Interestingly, DNA methylation analysis of infected A549 using sodium bisulfite PCR and the methylation-sensitive HpaII enzyme showed potential methylation activity within the promoter regions of ten-eleven translocation (TET) genes located on CpG/397-8 and CpG/385-6 of TET1 and TET3, respectively. Such methylation changes in TET effectors decreased their expression profile following infection, indicated by quantitative real-time PCR (RT-qPCR), immunoblotting and flow cytometry. Furthermore, pre-treatment of A549 cells with 5-AZA or EGCG significantly decreased the bacterial reproduction characterized by the expression of L. pneumophila 16S ribosomal RNA and the c.f.u. ml-1 of bacterial particles. Moreover, both methylation inhibitors showed potent inhibition of methionine synthase (MS) expression, which was further confirmed by the docking analysis of inhibitor ligands and crystal structure of MS protein.Conclusion. These data provide evidence for the methylomic changes in the promoter region of TET1 and TET3 by L. pneumophila infection in the A549 cell line and suggest the anti-bacterial properties of 5-AZA and EGCG, as methylation inhibitors, are due to targeting the epigenetic effector methionine synthase.


Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Pulmão/microbiologia , Doença dos Legionários/metabolismo , Doença dos Legionários/microbiologia , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Células Epiteliais/microbiologia , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
13.
Sensors (Basel) ; 23(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36772440

RESUMO

Legionellosis is a generic term describing the pneumonic (Legionnaires' disease, LD) and non-pneumonic (Pontiac fever, PF) forms of infection with bacteria belonging to the genus Legionella. Currently, the techniques used to detect Legionella spp. in water samples have certain limitations and drawbacks, and thus, there is a need to identify new tools to carry out low-cost and rapid analysis. In this regard, several studies demonstrated that a volatolomics approach rapidly detects and discriminates different species of microorganisms via their volatile signature. In this paper, the volatile organic compounds (VOCs) pattern emitted in vitro by Legionella pneumophila cultures is characterized and compared to those produced by other Legionella species and by Pseudomonas aeruginosa, using a gas sensor array and gas chromatograph mass spectrometer (GC-MS). Bacterial cultures were measured at the 3rd and 7th day after the incubation. Sensor array data analyzed via the K-nearest neighbours (k-NN) algorithm showed a sensitivity to Legionella pneumophila identification at around 89%. On the other hand, GC-MS identified a bouquet of VOCs, mainly alcohols and ketones, that enable the differentiation of Legionella pneumophila in respect to other waterborne microorganisms.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Projetos Piloto , Cromatografia Gasosa-Espectrometria de Massas , Doença dos Legionários/diagnóstico , Doença dos Legionários/microbiologia
14.
PLoS One ; 18(2): e0281587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36758031

RESUMO

Legionella organisms are ubiquitous environmental bacteria that are responsible for human Legionnaires' disease, a fatal form of severe pneumonia. These bacteria replicate intracellularly in a wide spectrum of host cells within a distinct compartment termed the Legionella-containing vacuole (LCV). Effector proteins translocated by the Dot/Icm apparatus extensively modulate host cellular functions to aid in the biogenesis of the LCV and intracellular proliferation. RavZ is an L. pneumophila effector that functions as a cysteine protease to hydrolyze lipidated LC3, thereby compromising the host autophagic response to bacterial infection. In this study, we characterized the RavZ (RavZLP) ortholog in L. longbeachae (RavZLLO), the second leading cause of Legionella infections in the world. RavZLLO and RavZLP share approximately 60% sequence identity and a conserved His-Asp-Cys catalytic triad. RavZLLO is recognized by the Dot/Icm systems of both L. pneumophila and L. longbeachae. Upon translocation into the host, it suppresses autophagy signaling in cells challenged with both species, indicating the functional redundancy of RavZLLO and RavZLP. Additionally, ectopic expression of RavZLLO but not RavZLP in mammalian cells reduces the levels of cellular polyubiquitinated and polyneddylated proteins. Consistent with this process, RavZLLO regulates the accumulation of polyubiquitinated species on the LCV during L. longbeachae infection.


Assuntos
Legionella longbeachae , Legionella pneumophila , Legionella , Doença dos Legionários , Animais , Humanos , Legionella longbeachae/metabolismo , Proteínas de Bactérias/genética , Doença dos Legionários/microbiologia , Vacúolos/metabolismo , Ubiquitinação , Fagossomos/metabolismo , Autofagia , Mamíferos/metabolismo
15.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835297

RESUMO

Legionella pneumophila is an intracellular pathogen that can cause severe pneumonia after the inhalation of contaminated aerosols and replication in alveolar macrophages. Several pattern recognition receptors (PRRs) have been identified that contribute to the recognition of L. pneumophila by the innate immune system. However, the function of the C-type lectin receptors (CLRs), which are mainly expressed by macrophages and other myeloid cells, remains largely unexplored. Here, we used a library of CLR-Fc fusion proteins to search for CLRs that can bind the bacterium and identified the specific binding of CLEC12A to L. pneumophila. Subsequent infection experiments in human and murine macrophages, however, did not provide evidence for a substantial role of CLEC12A in controlling innate immune responses to the bacterium. Consistently, antibacterial and inflammatory responses to Legionella lung infection were not significantly influenced by CLEC12A deficiency. Collectively, CLEC12A is able to bind to L. pneumophila-derived ligands but does not appear to play a major role in the innate defense against L. pneumophila.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Lectinas Tipo C , Legionella pneumophila , Doença dos Legionários , Receptores Mitogênicos , Animais , Humanos , Camundongos , Lectinas Tipo C/metabolismo , Legionella pneumophila/imunologia , Doença dos Legionários/imunologia , Doença dos Legionários/microbiologia , Macrófagos/metabolismo , Macrófagos Alveolares/metabolismo , Receptores Mitogênicos/imunologia
16.
mSphere ; 8(1): e0055222, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36598225

RESUMO

Legionella pneumophila is a natural pathogen of unicellular protozoa that can opportunistically infect macrophages and cause Legionnaires' Disease. Intracellular replication is driven by hundreds of bacterial effector proteins that are translocated into infected host cells by a Dot/Icm type IV secretion system. L. pneumophila effectors are temporally regulated in part by a unique family of translocated regulatory effectors, termed metaeffectors, which bind and modulate the function of a cognate effector in host cells. Regulation of the cytotoxic effector SidI by its cognate metaeffector, MesI, is critical for L. pneumophila virulence in natural and opportunistic hosts. MesI binds and negatively regulates SidI activity in vitro, but how impaired regulation of SidI impairs L. pneumophila intracellular replication is unclear. Using a chromosomally encoded inducible expression system, we found that SidI was toxic to L. pneumophila when uncoupled from MesI. SidI enzymatic activity was required for intrabacterial toxicity since L. pneumophila growth was unaffected by induced expression of a catalytically inactive sidI allele. We also found that MesI translocation into host cells was dispensable for intracellular replication and that MesI-deficient bacteria were rapidly degraded within host cells. These data suggest that MesI promotes L. pneumophila intracellular replication by regulating SidI within the bacterium and reveal a unique role for intrabacterial effector regulation by a translocated metaeffector in L. pneumophila virulence. IMPORTANCE Legionella pneumophila replicates within phagocytic host cells using hundreds of effector protein virulence factors, which canonically subvert the function of host proteins and pathways. L. pneumophila encodes a unique family of translocated effectors called metaeffectors, which bind and regulate the function of a cognate effector in host cells. The metaeffector MesI promotes L. pneumophila virulence by regulating the cytotoxic effector SidI; however, the MesI regulatory mechanism is poorly understood. We discovered a unique intrabacterial role for MesI in L. pneumophila virulence. When uncoupled from MesI, SidI was toxic to L. pneumophila in vitro and triggered robust bacterial degradation in host cells. Furthermore, translocation of MesI was dispensable for intracellular replication, demonstrating that intrabacterial regulation of SidI contributes to L. pneumophila virulence. These data show a novel and important role for translocated effector activity within the bacterium, which challenges the dogma that L. pneumophila effectors function exclusively within host cells.


Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Legionella pneumophila/genética , Virulência , Doença dos Legionários/microbiologia , Macrófagos/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
17.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L373-L384, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719079

RESUMO

Legionella pneumophila is the main etiological agent of Legionnaires' disease, a severe bacterial pneumonia. L. pneumophila is initially engulfed by alveolar macrophages (AMs) and subvert normal cellular functions to establish a replicative vacuole. Cigarette smokers are particularly susceptible to developing Legionnaires' disease and other pulmonary infections; however, little is known about the cellular mechanisms underlying this susceptibility. To investigate this, we used a mouse model of acute cigarette smoke exposure to examine the immune response to cigarette smoke and subsequent L. pneumophila infection. Contrary to previous reports, we show that cigarette smoke exposure alone causes a significant depletion of AMs using enzymatic digestion to extract cells, or via imaging intact lung lobes by light-sheet microscopy. Furthermore, treatment of mice deficient in specific types of cell death with smoke suggests that NLRP3-driven pyroptosis is a contributor to smoke-induced death of AMs. After infection, smoke-exposed mice displayed increased pulmonary L. pneumophila loads and developed more severe disease compared with air-exposed controls. We tested if depletion of AMs was related to this phenotype by directly depleting them with clodronate liposomes and found that this also resulted in increased L. pneumophila loads. In summary, our results showed that cigarette smoke depleted AMs from the lung and that this likely contributed to more severe Legionnaires' disease. Furthermore, the role of AMs in L. pneumophila infection is more nuanced than simply providing a replicative niche, and our studies suggest they play a major role in bacterial clearance.


Assuntos
Fumar Cigarros , Legionella pneumophila , Doença dos Legionários , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Doença dos Legionários/metabolismo , Doença dos Legionários/microbiologia , Pulmão/microbiologia
18.
Eur J Immunol ; 53(2): e2249985, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36427489

RESUMO

Flagellin-induced NAIP/NLRC4 inflammasome activation and pyroptosis are critical events restricting Legionella pneumophila infection. However, the cellular and molecular dynamics of the in vivo responses against this bacterium are still unclear. We have found temporal coordination of two independent innate immunity pathways in controlling Legionella infection, the inflammasome activation and the CCR2-mediated Mo-DC recruitment. Inflammasome activation was an important player at the early stage of infection by lowering the numbers of bacteria for an efficient bacterial clearance conferred by the Mo-DC at the late stage of the infection. Mo-DC emergence highly depended on CCR2-signaling and dispensed inflammasome activation and pyroptosis. Also, Mo-DC compartment did not rely on the inflammasome machinery to deliver proper immune responses and was the most abundant cytokine-producing among the monocyte-derived cells in the infected lung. Importantly, when the CCR2- and NLRC4-dependent axes of response were simultaneously ablated, we observed an aggravated bacterial burden in the lung of infected mice. Taken together, we showed that inflammasome activation and CCR2-mediated immune response interplay in distinct pathways to restrict pulmonary bacterial infection. These findings extend our understanding of the in vivo integration and cooperation of different innate immunity arms in controlling infectious agents.


Assuntos
Células Dendríticas , Inflamassomos , Legionella pneumophila , Doença dos Legionários , Monócitos , Animais , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Células Dendríticas/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Legionella pneumophila/imunologia , Doença dos Legionários/genética , Doença dos Legionários/imunologia , Macrófagos , Camundongos Knockout , Monócitos/metabolismo , Receptores CCR2/metabolismo
19.
BMJ Case Rep ; 15(12)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585049

RESUMO

Clinically mild encephalitis/encephalopathy with a reversible splenial lesion (MERS) is a clinicoradiologic syndrome diagnosed by temporary hyperintense lesion in the area, including the splenium of the corpus callosum, on diffusion-weighted imaging and neuropsychiatric symptoms that recover without sequelae. MERS is rare in adults, especially elderly people. We herein report a man in his 60s diagnosed with MERS caused by Legionella pneumonia. He completely recovered with only the administration of levofloxacin and azithromycin despite the risk factors of an advanced age, medical history of untreated hypertension, bilateral spontaneous pneumothoraxes, smoking and drinking habits and pulmonary emphysema. To our knowledge, this is the oldest case of MERS due to Legionella pneumonia and extremely old among total MERS cases. Our research revealed that Legionella species are the most common pathogens of adult-onset MERS, while viruses are the main causative factors in children. This case helps clarify the features of MERS in high-risk adults.


Assuntos
Encefalopatias , Encefalite , Legionella , Doença dos Legionários , Pneumonia , Masculino , Adulto , Criança , Humanos , Idoso , Encefalopatias/complicações , Encefalite/diagnóstico por imagem , Encefalite/etiologia , Doença dos Legionários/complicações , Doença dos Legionários/diagnóstico , Doença dos Legionários/tratamento farmacológico , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Pneumonia/complicações , Imageamento por Ressonância Magnética
20.
Can J Microbiol ; 68(12): 747-757, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194898

RESUMO

Legionella pneumophila is a Gram-negative bacterium found in natural and man-made water systems where it replicates within amoebas and ciliates. In humans, once inside the lungs, L. pneumophila replicates in alveolar macrophages and causes Legionnaires' disease, a severe pneumonia. The Icm/Dot type IVb secretion system is a major virulence factor required for intracellular multiplication. The Icm/Dot system allows the secretion of effectors into the cytoplasm of the host cell. These effectors modify host cell vesicular trafficking and prevent maturation of the phagosome. The innate immune response is crucial in restricting L. pneumophila proliferation. TNF-α is one of the major cytokines involved in this process as it renders macrophages more resistant to L. pneumophila infection and induces apoptosis of L. pneumophila-infected macrophages. Tail-specific proteases (Tsp) are involved in tolerating thermal stress and in virulence. We have previously characterized the Tsp encoded by L. pneumophila, showing that it is important for surviving thermal stress and for infection of amoeba when a temperature change occurs during infection. Here, we demonstrated that Tsp is required for intracellular multiplication in macrophages. Absence of tsp is associated with higher production of TNF-α by macrophages in response to L. pneumophila infection. This effect is independent of the Icm/Dot secretion system.


Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Fator de Necrose Tumoral alfa , Doença dos Legionários/microbiologia , Endopeptidases , Proteínas de Bactérias/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA